THE QUARTERLY JOURNAL OF EXPERIMENTAL PSYCHOLOGY, 1988 404 (3) 423442

Programming Plans
and Programming Expertise

D. J. Gilmore
University of Nottingham, U K.

T. R. G. Green
MRC Applied Psychology Unit, Cambridge, U.K.

This paper addresses issues of the nature of expertise in programming and asks
whether “programming plans” represent the underlying deep structure of a
program. It reports an experiment that investigated the effect, on experienced
programmers, of highlighting the plan structure of a computer program, while
they were performing both plan-related and unrelated tasks. The effect was
examined in both Pascal and BASIC. For Pascal programmers, perceptual cues
to the plan structure were useful only for plan-related tasks, but the same cues
were of no benefit to experienced BASIC programmers in any of the tasks.
These results suggest that the actual content of programming plans does not
generalise across different languages, although it is possible that the BASIC
programmers can use other plans. From these results a more detailed descrip-
tion of programming plans and their role in programming expertise can be
developed. The fact that BASIC programmers were not sensitive to the same
plans as Pascal programmers implies that plans cannot represent the under-
lying deep structure of the programming problem.

The “programming plan” has been proposed by Spohrer, Soloway, and Pope
(1985) and by Rist (1986) as a major feature of programming expertise.
Expert programmers are assumed to acquire a repertoire of such plans,
which represent stereotypic code fragments, allowing them to generate code
and recognise its structure more easily. Programming plans have been used
as an important concept in the development of programming tutors (e.g.
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Bridge: Bonar & Cunningham, in press) and in teaching aids, such as
debugging tools (e.g. Proust: Johnson, 1986). However, despite this wide-
spread acceptance of programming plans, there are a number of important
unresolved issues. For example, the psychological nature of plans has not
been adequately described, nor has the generality of plans (to other program-
ming languages) been discussed.

What are Programming Plans?

The theory of programming plans is to describe the errors that novice
programmers make and to explore the misconceptions that underlie them. It
is intended that the model should describe the process by which these
misconceptions are corrected. The theory claims that expert programmers
develop both more plans and higher-level plans than novices, and that this
acquisition of plans is the characteristic of expertise (Rist, 1985). However,
before submitting the theory to empirical test, it is necessary to be clear
exactly what is meant by the term *“‘programming plan”.

The analysis derives from the structured programming philosophy, which
solves a problem through a process of top-down refinement. Sub-goals that
are generated by this process can either be treated as problems to be solved,
or else a solution may be immediately available to the programmer. In the
latter case the programmer could be said to have a plan for that goal. The
added complexity is that the plans must not only be generated, but they must
also be interleaved with each other in order to produce a correct program.
The theory also builds on research from the domain of text comprehension,
which has provided empirical support for the cognitive reality of goal-based
and plan-based knowledge (Bower, Black, & Turner, 1979; Schank &
Abelson, 1977).

Rist (1985) has attempted to formalise the concept of a programming plan
and has described how it underpins the transition from novice to expert. He
describes a collection of different sorts of plans, all represented as slot-and-
filler mechanisms. Program plans—PPlans—(see Figure 1) are basic plans
similar to those described by Soloway and Ehrlich (1983). They have slots for
the goal of the plan, the code generated by the plan, etc. Plans for counting,
summing, and searching are of this type.

Complex program plans—CPPlans—are constructed from a number of
PPlans, in order to achieve goals at a higher level. Other types of plans are
abstract plans (APlans), which represent knowledge of different types of
loop, different types of sort etc., specific plans (SPlans), which represent
specific routines, such as bubble sort, and global plans (GPlans), such as
“initialize”, “‘validate” or “‘update”. Although such knowledge undeniably
exists and is understood by experts, the distinctions between these different
types of plans are not very clear. For the purposes of this paper, therefore,
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Goal: find an occurrence of ?x
CODE PLAN TERMS
Plan: ?found := false initialise to not found
loop through category of ?x
if ?x then
?found := true set it to true
L= use it
Variations: i) loop using ?found as end test

ii) loop using ?found within the loop
iii) a marker to be used outside the loop

ncl ns: None

Optional plans: Store ?x when found

Plan - ' ' pl

FIG. 1 Plan descriptions (from Rist, 1985).

PPlans will be assumed to be the typical plans, as they represent the point of
agreement across all the writing on programming plans. In particular, the
plans used in the experiment reported below are the “average”, “filter”,
“input” and “maximum” plans.

Empirical Studies

The majority of studies addressing the content and structure of expertise in
programming have been conducted by the Cognition and Programming
Project at Yale. A number of experiments has been conducted to demon-
strate the possession of such plan knowledge by expert programmers.

Soloway, Ehrlich, Bonar, and Greenspan (1982) and Soloway and Ehrlich
(1983) have presented experimental evidence for the ability of expert pro-
grammers to use plans. For example, in one study novices and experts were
required to complete the initialization statements at the beginning of a
program. Experts were significantly more likely to fill the gap with appro-
priate constructs than were novices, suggesting that they have acquired plan
knowledge about the roles of variables and forms of initialisation and
update. Other studies have shown that novices frequently make errors as a
result of attempts to achieve two goals with a single plan (referred to as
“merged goals™).
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Rist (1985) collected both experimental and protocol data to investigate
the development of plans and expertise. In his experiment (with 11 novices
and 15 experts) the programs were analysed into goal and plan structures, the
former being at a higher level than the latter. Hypothesizing that the higher-
level structure would be more beneficial to the experts, Rist gave both types
of information to groups of novices and experts, expecting an interaction.
Instead, the plan structure proved most useful to both groups in a debugging
task. Rist argues that this is not evidence against the theory, but that it is due
to his failure to analyse the plan and goal structure of the program correctly.

The protocols, obtained from novices and experts, provide a clear
demonstration of the use of plans by experts. For example, when comprehen-
sion behaviour was classified as either deductive or inductive, Rist observed
that experts generally deduced the presence of plans and matched the code
against their deductions, whereas novices induced and constructed plans
while reading the code. Unfortunately much of this analysis is subjective,
with Rist consistently using examples from the performance of the “much
less skilled”” novice (there were only two novices).

Problems with Programming Plans

The above analysis of programming plans raises three important questions,
some of which have already been mentioned:

1. Are plans psychologically real? Their existence is mainly inferred from
protocol and error analysis, rather than from direct experimental
evidence. Such support can be obtained by showing that perceptual
cues to the plan structure of a program improve the comprehensibility
of the program.

2. Are plans the main psychological representation of programming know-
ledge? The plan theory suggests that plans are the expert program-
mer’s mental representation of a program, that they represent the deep
structure of the problem. Thus, providing a situation in which the plans
can be readily perceived should improve performance on all program-
ming tasks.

3. Are the observed plans related to the problem being solved, or the
language being used? All the existing evidence comes from studies
with Pascal programmes, with the assumption that the effects will
generalize to other languages. But there have been no attempts to
examine whether programmers in other languages use similar plans.

The experiment to be described addresses these three questions by
providing perceptual cues to different structures in a program and observing
those tasks in which performance is improved. Thus, one can discover which
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tasks require information from which structures and which structures are
understood by the programmer (cf. Gilmore & Green, 1984; Gilmore,
1986a). In the experiment the tasks compared are the detection of a variety of
bug-types, with perceptual cues provided to both plan and control structures.

Classifying Errors Through Plan Analysis

Spohrer et al. (1985) analysed a large collection of novice Pascal errors
(Johnson, Soloway, Cutler & Draper, 1983) according to the plan theory.
Their classification scheme describes bugs as differences between a novice’s
implementation of a plan and a correct implementation of that plan. The
difference is described in terms of the component of the plan in which is
occurs (for example, input, initializations), and within these components the
difference can be described as either missing, malformed, spurious, or
misplaced.

However, there are problems with this scheme because it is what Reason
(1984) describes as a behavioural scheme, relying upon simple, observable
categories such as omission, substitution etc. In the experiment described
below, a different classification scheme is used, which does not examine
discrepancies in the behaviour of the correct and the buggy program, but in
their structure. The following categories of bugs are distinguished:

1. Surface level bugs. These bugs are independent of any particular
structure in the program and may be caused by typing errors and
syntactic slips (for example, missing or misplaced quotes or undeclared
variables).

2. Control-flow bugs. These occur within the control-flow structure of
the program, without affecting other structures. They may occur in one
piece of control-flow, or at the interaction of two bits of control-flow
(for example, a missing “‘begin”’ statement).

3. Plan structure bugs. Even when the control-flow structure is correct,
the plan structure may contain errors (for example, updating the wrong
variable).

4. Structure interaction bugs. Both the control-flow structure and the
plan structure may be correct, but the interaction of the two may
contain errors (for example, initializations within the main loop).

Making Structure Apparent

Gilmore and Green (1984) and Gilmore (1986a) have shown how providing
perceptual cues to aspects of program structure can lead to large improve-
ments in the performance of relevant programming tasks. The issue of
whether programming problems possess an underlying deep structure gives
rise to the specific question of whether providing perceptual cues to the plan
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structure of a program improves specific task performance or general
comprehensibility. Given the above bug classification scheme, it is appropri-
ate to compare the highlighting of plan structures with the highlighting of
control-flow structures.

Highlighting Control-flow Structure—Indentation

Many experiments have been performed on the value of indentation in
programs (e.g. Miara, Musselman, Navarro, & Shneiderman, 1983; Kesler et
al., 1984) with apparently conflicting results. But a closer inspection reveals
that they are in agreement: indentation is useful for tasks that require an
understanding of the control-flow structure of the program, but it is not
useful for other programming tasks. Thus, indentation seems like the ideal
perceptual cue to use to highlight the control-flow structure of the program
without affecting the perception of other structures.

Highlighting Plan Structure— Colour

If indentation were used to highlight plan structures as well, then it would
be impossible to construct an experimental condition in which both types of
structure were cued. Thus, the perceptual cues to plan structure must not
conflict with indentation. This can be achieved by the use of colour cues, in
which fluorescent highlighting pens are used to group the lines of code which
belong to the same plan.

Hypotheses

The resuits of Giimore and Green (1984) suggest that it is reasonable to
expect that plans are just another view of the program code, rather than a
mental language of programming, and claims by Anderson (1985) suggest
that plans will be equally useful to expert BASIC programmers as to expert
Pascal programmers. Thus, the following predictions can be made:

1. For surface errors: The presence of cues will make no difference to the
detection of surface errors.

2. For control-flow errors: Indentation cues to control-flow will improve
the detection of control-flow errors (i.e. no cues and plan structure cues
will produce a lower detection rate than control structure cues or both
cues).

3. Forplanerrors: The use of colour cues to plan structures will improve
the detection of plan errors (i.e. no cues and control structure cues will
produce a lower detection rate than plan structure cues or both cues).

4. For interaction errors: The presence of both types of cues will
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improve the detection of these errors (i.e. both cues will produce a
higher detection rate than the other three conditions).

This last prediction is less certain than the others, and it is included more
for the sake of completeness, as there is no evidence to suggest how
programmers will react to the presence of two types of perceptual cue in the
same program.

Method

Subjects. Subjects were recruited from final-year Computer Science
undergraduates at the Universities of Cambridge, Sheffield, and Lancaster,
from final-year Applied Maths students at Cambridge, and final-year
Engineering students at Lancaster. There were 32 experienced Pascal pro-
grammers and 32 experienced BASIC programmers. The subjects were
predominantly male, with an average age of approximately 22. For most
students (44) the experiment occurred after their final examinations, whereas
for a few (20) it occurred near the beginning of their final year. The
experiment had no bearing on their course marks and subjects were paid for
their participation.

Experimental Programs. Three problems were used, similar to those
studied by the Yale project. One calculated an average over 10 inputs and
was used as a practice problem (Problem 1). The other problems were more
complex, one calculating an average over a certain number of filtered inputs
(Program 2), and the other calculating the maximum as well (Problem 3).
Buggy programs for each problem were created (four for the practice
problem, ten each for the other two), and each buggy program contained two
bugs, giving a total of 40 bugs in the experimental programs (ten of each of
the four types).

Indentation was added to the Pascal programs by including 4 extra spaces
following each begin, and removing these spaces before each end. In the
BASIC programs, indentation was added in a manner that reflected the
underlying control structure. The cues to the plan structures were introduced
to both languages using fluorescent marking pens in three distinctive colours.
In all programs the same colour was always used for the same plan. The
plans involved were input, average, filter and maximum, but only three
occurred in any one program.

Design. The experiment used a bug-detection task with four different
program formats within each language:

1. no perceptual cues (no-cues);
2. perceptual cues to control-flow structure (control-cues);
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3. perceptual cues to plan structure (plan-cues);
4. perceptual cues to both control-flow and plan structure (both-cues).

An example of the both-cues condition is given in Figure 2, in both Pascal
and BASIC, although different fonts are used instead of different colours.
Likewise, there were four bug types:

1. Surface errors;

2. Control-flow errors;

3. Plan structure errors;

4. Plan structure x Control-flow interaction errors.

The same bugs were used in all the format conditions, and as far as
possible in both languages. Thus, the experiment used a mixed design, with
two between-subjects factors (language and program format) and one
within-subjects factor (bug type), with 8 subjects in each group.

Performance was measured by the number of each type of bug detected in
each of the four program conditions. Figure 2a contains a Plan Error and an
Interaction Error, and Figure 2b contains a Surface Error and a Control
Error.

Procedure. The experimental programs were presented to subjects in a
booklet, with one program per page. The practice problems occurred in a
fixed order, but the order of the remaining programs was randomized, except
that the filtering programs were presented before the maximum programs.

The initial instructions to the subjects described their task as one of
marking novice programs that had been produced under examination
conditions. This provided a justification for the task as a whole and for the
repetition of a single program ten times. This description of the task also
emphasized to subjects that their task was to mark the errors and not to
correct them. Subjects were given a limited amount of time to mark each
program (60, 80, and 100 sec on problems 1, 2, and 3, respectively).

Following these general instructions, subjects were given a specification of
Problem 1—the practice problem—and an example correct program. They
had 2min to study this. The experimenter was available to answer any
questions throughout this period. Next the subjects marked the four buggy
practice programs. They were informed of the “expected” bugs after each
program. Any alternative bugs suggested by the subjects were marked as
well. The same routine was then followed for Problems 2 and 3, except that
3 min was allowed for the initial study of the problem specification and
sample program, and the randomized order of the programs precluded the
provision of feedback.

For each program subjects were told to look for errors, but not how many
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10 program prob12;
20 vars depth, days, rainfalliinteger;

30 average:real,

40 begin

50 for days := 1 to 40 do

60 begin

70 depth :=0;

80 writeln("Noah, please enter todays rainfall
90 readln (rainfall);

100 rainfall:= rainfall + depth;

110 end,;

120 average := depth/40;
130 writeln("Average is ", average);

140 end.

(a) Pascal program (with plan error
line 100 and interaction error line 70).

10 REM probi4
20 for n=1 to 40

30 print "Noah, please enter todays rainfall"
40 read rain

50 total = total + rain

60 average = total /40

70 print "Average is avera"

80 next

(b) Basic program (with surface error
line 70 and control-flow error lines 55/80).

FIG. 2 Example programs used in the experiment. Different fonts are used to represent the
colour highlighting of different plans.

to look for. For each one they found they were asked to note the line number
of the error and a short description of the error.

Results

The mean error detection rates are shown in Table 1. A three-factor ANOVA
was performed on this data, revealing main effects of language, F(1, 56)=17.3,
p<0.01, and bug type, F(3, 168)=26.6, p<0.01. The Language x Bug type
interaction was significant, F(3, 168)=7.7, p<0.01, as was the three-way
interaction between language, bug type, and cue type, F(9,168)=2.2,
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»<0.05. The emphasis of the ensuing analysis was to tease apart this three-
way interaction, as simple interpretations of the other effects are not possible.

Separate ANOVASs for the results from each language revealed that the
cue type and bug type interaction was significant for the Pascal program-
mers, F(9,84)=2.7, p<0.05, but not for the BASIC programmers,
F(9,84)=0.05. This interaction for the Pascal programs is illustrated in
Figure 3, by showing performance in the three-cued conditions relative to the
no-cues baseline. Planned comparisons were performed from the Pascal
ANOVA 1o investigate whether performance was best when cue type and bug
type were matched. These comparisons correspond to the four hypotheses
presented earlier, except that they applied to both languages, rather than to
Pascal alone. Thus, in relation to Hypothesis 1, for the surface errors an
analysis of simple main effects revealed no effect of cues, F(3,84)=0.02.
Hypothesis 2 concerned the plan structure errors, for which the comparison
between plan cue conditions and the other cue conditions was significant,
F,omp (1,84)=9.8, p<0.01. For control structure errors (Hypothesis 3) the
comparison between control cue conditions and the others was significant,
Fomp (1,84)=28.6, p<0.01. Likewise, the comparison for interaction errors
(Hypothesis 4) between the both-cues condition and the other three was
significant (F__ (1,84)=5.8, p<0.05). Thus, for the Pascal programmers,

omp

TABLE 1
Error detection rates (percent) by error type and programming language.

Error Types

Plan Control
Surface Structure Structure Interaction

PASCAL

No Cues 36 67 46 60

Indentation 41 64 67 56

Colour 37 85 40 59

Both 4] 81 St 74
Mean 39 74 51 62
BASIC

No Cues 62 71 61 65

Indentation 67 82 62 66

Colour 59 67 64 60

Both 59 77 61 56

Mean 61 74 62 62
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Indentation Cues

e Colour Cues
Both Cues
+20
+10
10 Surface Plan Control Interaction
Structure Structure
EBRORTYPES

FIG. 3 Change in the error detection rates for the Pascal programs caused by the presence of
cues.

cues to particular structures only improve the detection of bugs within those
structures.

Figure 4 similarly shows the relative error detection rates for the BASIC
programs, which are clearly different from those for the Pascal programs and
from those predicted. The simple effects of cues were not significant for any
of the four error types, F(3,84)=1.5 for Plan Structure errors and
F(3,84)<1 for the other error types. Thus, the results for the BASIC
programmers do not show any advantage for plan cues or for control cues.

The other effects observed in the three-factor ANOVA are closely related
to the above analysis of the three-way interaction. The main effect of
Language and the Language % Bug interaction cannot be easily interpreted,
because the effects are different for the different cues. Appendix 1 presents a
table of the simple effects of language, which reveals that only for surface
errors did the BASIC programmers consistently detect more errors than the
Pascal programmers, F(1, 168)> 5, p <0.05), and Table 1 clearly shows the
BASIC programmers were no better, on average, at detecting plan or
interaction errors.
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FIG. 4 Change in the error detection rates for the Basic programs caused by the presence of
cues.

Because of the lack of any effects for the BASIC programmers and
because many of the BASIC programmers commented that there was a large
proportion of control-flow bugs, it was felt necessary to examine the error
descriptions made by the two groups of programmers. Figure 5 shows for
each bug type the percentage of those detected that were described in terms
of control flow. It is clear that this proportion is considerably higher for the
BASIC programs than for the Pascal programs, suggesting that the BASIC
programmers may use control structure as their predominant view of the
program,

This tendency suggests that indentation should be the most useful cue to
the BASIC programmers, as it provides cues to the information structure,
which they find most useful. Re-examination of Figure 4 reveals that in three
of the four error types the best bug detection rate occurred with the indented
programs, though this difference did not approach significance.

Thus, in summary, all of the hypotheses made in the introduction have
been supported by the data from the Pascal programmers, whilst none of
them has been supported by the data from the BASIC programmers.
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% errors
described
as control Pascal BASIC
100—
80 —
60 —
40 —4
20 —~
Plan Pl x Con Plan Pl x Con
Surface Control Surface Control
ERRORTYPE

FIG. 5 Percentage of errors detected that are described in terms of control-fiow.

Discussion

In relation to the three questions posed in the Introduction, the results clearly
show that

1. plan structures are psychologically meaningful to Pascal programmers,
because perceptual cues to them bring about a significant improvement in
performance;

2. as plan structure cues do not improve performance on non-plan-related
tasks, plans do not represent the deep structure of the problem but are a
non-syntactic view of the code, with which experts are proficient;

3. these Pascal plans do not generalise to BASIC, suggesting that expert
BASIC programmers do not use the same view of the program as Pascal
experts, possibly being more influenced by control-flow.

Fortunately these answers are coherent, in that it would make sense for
plans to be a mental language of programming and yet not to generalize to
other languages. Likewise, if plans are only an alternative information
structure within the program, then we should expect them to be partly
determined by the language being used.

The first two results do not lessen the importance of the plan concept, but
they suggest that tools and languages should not be designed solely around
plans. The emphasis needs to be on tools and languages that facilitate the
interleaving of different plan components when writing, and the unravelling
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of components when reading. Furthermore, the effectiveness of cues to plan
structures reveals the importance of a clearer definition of plans, as from a
formal definition it would be possible to provide such cues automatically.

In furtherance of this end, we should turn our attention to the third
result —the failure of the results to generalize across languages— because this
means that formalizing the Pascal plans, rather than a more general concept,
may be inadequate for the provision of tools for other languages.

But before discussing these matters in too great a detail, it is essential to
consider the possibility that these results arise simply because of uninterest-
ing population differences, as there is clearly a confounding of subject and
language effects. An obvious argument would be that the BASIC program-
mers were not as experienced, but although we have no data on their amount
of programming experience, they were pursuing a course in Computational
Mathematics which required a considerable quantity of programming. It is
unlikely, therefore, that there was any sizeable difference in the programming
experience of the two groups.

A second possibility, which is more plausible, is that there were major
differences in teaching strategies between the two groups. However, the main
question of this paper is whether expertise in programming necessarily
involves the use of plan structures when writing and reading programs. If the
acquisition of plan structures is the defining quality of expertise, then
differences in teaching stategy etc. should not affect the nature of expertise.
For example, it is reasonable to argue that the nature of expertise in chess
does not depend on teaching strategies, because the nature of attack and
defence and the configurations that represent them are inherent in the game.
Similarly, programming plans are assumed to be inherent in the problem, not
in the language or the teaching, and the development of such schemata/plans
is dependent upon experience, not on teaching. Our data shows that this is an
indefensible viewpoint for programming expertise and that different forms
of expert knowledge arise as a result of either language or teaching
differences. Given that we have little information about the teaching strate-
gies, but we do know plenty about the language differences, the remainder of
this discussion will consider what influence they may have. It is hoped that by
so doing some of the important teaching factors might suggest themselves.
This can be best achieved by considering more carefully what programming
plans might be.

A Clarification of Plans

Could Plans have Generalised Across Languages?

If we consider Rist’s (1985) description of plan structures, then it is
apparent that the original question of whether plans would generalize to
BASIC is meaningless. In Rist’s description a plan is a mapping between
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some aspect of the problem to be solved and lines of program code. Clearly
this mapping could not be exactly the same in different languages, because
the code itself differs. Thus, there is a need to clarify exactly what was
intended by the question, and the implications of this for the results.

There are in fact three components to Rist’s plan structures: first there is
the knowledge of the parts of the problem to be programmed, then there is
the knowledge of the programming language, and finally there is the
mapping. Rist’s view of the relationship between these components is that
they together form a plan structure as acquired by an expert programmer in
an all-or-none manner.

An alternative, however, is to view the first two as knowledge to be
acquired and the third component as an automated skill (in the sense of
Underwood, 1982). In this way a programmer can possess either of the first
two components independently, but the third depends upon the existence of
the other two. In this view a programmer may fail to display knowledge of
plans for a variety of reasons.

1. A programmer may lack the knowledge with which to analyse the
problem into its parts; for example, a progammer may be unfamiliar
with the task, or components of the task, being solved (e.g. calculating
an ANOVA) and therefore be unable to take advantage of this.

2. A programmer may lack the knowledge of how to code a particular
part of the problem, even when the required algorithm is known. Such
knowledge is likely to be related to experience. This possibility is
supported by the fact that in Rist (1986) there was evidence that
novices could appreciate the plans used in a program.

3. Finally, a programmer may possess both these pieces of knowledge,
but the process of mapping one onto the other may not be known, or
automated. This automatization process will also be related to pro-
gramming experience.

Given this view of plan structures, the original question about the
generalization of plans can be understood. The question addressed by these
experiments was whether the mapping between equivalent pieces of code and
their role in the problem was similarly automated in both groups of
programmers. The results suggest not, and it is unlikely that this is due to
differences in the knowledge aspect of plans, as there is no obvious reason for
the two groups to differ in this—the language-independent knowledge can be
assumed equal in programmers of such similar backgrounds, and the
language-dependent knowledge is unlikely to differ, as both languages
require similar algorithms to solve these problems.

The question that remains, therefore, is why should the mapping become
automated for Pascal programmers, but not (or less so) for BASIC program-
mers? Two reasons suggest themselves:
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1. BASIC does not contain stereotypic fragments;
2. BASIC programmers fail to detect these fragments.

In fact, both of these may be true. Firstly, the greater variety of syntactic
constructs and the structure within Pascal (compared with the BASIC used in
this experiment) provides the programmer with an easier task, as there is a
greater chance that stereotypes will occur. Second, factors such as the
declaration and initialization of variables in Pascal provides an extra
reference point for each variable, suggesting its role before the main
processing loop. Also, the fact that Pascal programmers have a compiler
than can detect most surface errors leaves them with more time to study the
higher-level structures of the program. This argument is supported by the
fact that it was only in the surface errors that there was a consistent
difference (across all cue conditions) in the error detection rate between the
two languages (see Appendix 1 and Table 1).

The general point underlying these explanations is that the Pascal
programs are more discriminable from each other (cf. Fitter & Green, 1981),
allowing the programmer to infer the role of a particular statement more
easily. This is a property that we have termed role-expressiveness (Gilmore,
1986b). The argument is that role-expressiveness is a property of the
language that enables the automatization of the mapping between problem
and programming knowledge. In general, languages that promote role-
expressiveness will be easier to use.

Role-Expressiveness

There are three components to role-expressiveness:

1. Discriminability: This is simply whether the notation provides easy
access to chunks of code, where a chunk may be an individual statement, or a
group of statements. The first step in perceiving the role of some statement is
being able to discriminate that line from those that surround it.

2. Statement-Structure Mapping: The structural role of a statement is
its role within the program itself, independent of the problem being solved.
Unstructured languages (such as some BASICs) may use the same piece of
code for more than one purpose (e.g. as an initiahization and as an update).
Other languages make it harder to see what action is being performed by
some statement. For example, Prolog does not distinguish between instan-
tiated and uninstantiated variables—the Prolog command (SUM X Y Z)
may be adding X to Y, subtracting either of them from Z, or validating that a
sum is correct.

3. Statement-Task Mapping. Programmers need to understand not only
the structural role of program statements, but also their task role. Difficulties
arise here in languages that force the programmer to include statements with
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10 add_egg

20 stir

30 IF need_more_egg GOTO 10
40 |F ready_to_eat GOTO 70
50 add_oil

60 GOTO 20

70 use_mayonnaise

FIG. 6 An unstructured program for making mayonnaise. Line 10 has two roles—adding the
initial egg and adding extra egg later (after Green, 1980).

either many task roles or no task role. Figure 6 provides an exampie of
multiple task roles, in which the opening statement of the program has two
task roles. A different example of difficulty at this level can be seen in
Soloway, Benar, and Ehrlich’s (1983) study of novices’ looping errors in
Pascal, in which they observed that novices who tried to force the problem
into a “‘read/process” loop made errors when they were required to test the
terminating condition twice. The cause of this seems to be that the second test
has no clear task role. Informally we have noted a similar effect with novice
POP11 programmers learning tail-recursion. They struggle when the syntac-
tic structure of their program requires that the recursive function be called
twice. An example of such a program is given in Figure 7.

This concept of role-expressiveness is very important in the automation of
the mapping between program code and its function, but it is not the only
determinant of programming success (see Gilmore, 1986b, and Green,
Bellamy, & Gilmore, in preparation, for others). The difficulty that Lisp
novices have understanding the CONS function (Anderson, Farrell, &
Sauers, 1984) can be interpreted as a problem at the statement-structure
mapping. The automation of this mapping may give rise to a different type of
plan knowledge. Different teaching strategies may provide environments in
which different emphases are placed on these different aspects of program-

define countx(list, x);
if list = [] then
0

elseif hd(list) = x then

countx(tl{list),x) + 1
else

countx(tl(list),x)
endif
enddefine;

FIG. 7 A POPI! program whose syntactic structure requires the duplication of the tail-
recursion. The problem can be avoided by the use of a variable.

EP A 40/3-B
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ming knowledge, thus leading to differences in the nature of expertise. Much
more research is needed on the importance of language and educational
factors in determining the development of expertise.

SUMMARY

This paper has presented data that reveal a need to clarify the concept of
programming plans and their role in expertise. We claim that plans do not
represent the underlying deep structure of programming problems, and that
the content of plans as observed in Pascal experts is not the only possible
content in plan knowledge. Plans are described as having three components:

1. “naive” knowledge of methods of solving the problem of interest; this
may be affected by knowledge of the syntax of the programming
language;

2. knowledge of how to achieve particular effects within the programming
language;

3. an “‘automatic’ process that maps (1) onto (2).

This model suggests that plans may be of two types: Firstly, the mapping
may be triggered by (1), which includes most of the plans decribed by the
Yale project; secondly, the mapping may be triggered by (2)—for example, a
mapping may exist between the use of lists to solve some problem and the
Pascal representation of list structures. The important factor is that expertise
can develop at all three levels independently. This has implications for
development of programming tools and teaching aids.

Although our knowledge of the formation of automatic cognitive pro-
cesses is not sufficient to allow us to help students to construct the mapping,
it is reasonable to suppose that increasing a student’s awareness of the two
types of knowledge and providing practice in mapping one onto the other
should be of great benefit. This explains, in part, the success of the structured
programming school, because their emphasis on problem decomposition
should allow students to perceive the common methods of solution within
problems. Likewise, tools such as Bridge (Bonar & Cunningham, in press)
and Proust (Johnson, 1986) provide Pascal students with considerable
exposure to knowledge of Type (2). However, whereas structured program-
ming and knowledge of type (1) are language-independent, tools such as
Bridge and Proust are not. Thus, the important next steps are to develop
methods of predicting what knowledge of Type (2) would be for other
languages and to test these predictions empirically. If the results support this
model of expertise, then tools for languages other than Pascal may be
possible.

In conclusion, the concept of a programming plan is of central importance
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to the development of powerful programming environments and usable
programming languages, but determining their nature in language-indepen-
dent terms is an essential priority, which could have a significant impact on
general theories of the nature of expertise.
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APPENDIX 1

The F values for the simple effects of language

Error Types

Plan Control
Surface Structure Structure Interaction
No cues 27.6 0.2 3.7 0.4
Indentation 27.2 5.7 0.4 1.6
Colour 7.2 50 8.9 0.16
Both 50 0.32 16 4.9

df=1,168. F,, =392,

Bold values indicate significant differences.
Italic values indicate those where Pascal programmers detected more errors.





