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This paper addresses issues of the nature of expertise in programming and asks 
whether “programming plans” represent the underlying deep structure of a 
program. It reports an experiment that investigated the effect, on experienced 
programmers, of highlighting the plan structure of a computer program, while 
they were performing both plan-related and unrelated tasks. The effect was 
examined in both Pascal and BASIC. For Pascal programmers, perceptual cues 
to the plan structure were useful only for plan-related tasks, but the same cues 
were of no benefit to experienced BASIC programmers in any of the tasks. 
These results suggest that the actual content of programming plans does not 
generalise across different languages, although it is possible that the BASIC 
programmers can use other plans. From these results a more detailed descrip- 
tion of programming plans and their role in programming expertise can be 
developed. The fact that BASIC programmers were not sensitive to the same 
plans as Pascal programmers implies that plans cannot represent the under- 
lying deep structure of the programming problem. 

The “programming plan” has been proposed by Spohrer, Soloway, and Pope 
(1985) and by Rist (1986) as a major feature of programming expertise. 
Expert programmers are assumed to acquire a repertoire of such plans, 
which represent stereotypic code fragments, allowing them to generate code 
and recognise its structure more easily. Programming plans have been used 
as an important concept in the development of programming tutors (e.g. 
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Bridge: Bonar & Cunningham, in press) and in teaching aids, such as 
debugging tools (e.g. Proust: Johnson, 1986). However, despite this wide- 
spread acceptance of programming plans, there are a number of important 
unresolved issues. For example, the psychological nature of plans has not 
been adequately described, nor has the generality of plans (to other program- 
ming languages) been discussed. 

What are Programming Plans? 

The theory of programming plans is to describe the errors that novice 
programmers make and to explore the misconceptions that underlie them. It 
is intended that the model should describe the process by which these 
misconceptions are corrected. The theory claims that expert programmers 
develop both more plans and higher-level plans than novices, and that this 
acquisition of plans is the characteristic of expertise (Rist, 1985). However, 
before submitting the theory to empirical test, it is necessary to be clear 
exactly what is meant by the term “programming plan”. 

The analysis derives from the structured programming philosophy, which 
solves a problem through a process of top-down refinement. Sub-goals that 
are generated by this process can either be treated as problems to be solved, 
or else a solution may be immediately available to the programmer. In the 
latter case the programmer could be said to have a plan for that goal. The 
added complexity is that the plans must not only be generated, but they must 
also be interleaved with each other in order to produce a correct program. 
The theory also builds on research from the domain of text comprehension, 
which has provided empirical support for the cognitive reality of goal-based 
and plan-based knowledge (Bower, Black, & Turner, 1979; Schank & 
Abelson, 1977). 

Rist (1985) has attempted to formalise the concept of a programming plan 
and has described how it underpins the transition from novice to expert. He 
describes a collection of different sorts of plans, all represented as slot-and- 
filler mechanisms. Program plans-PPlans-(see Figure 1) are basic plans 
similar to those described by Soloway and Ehrlich (1983). They have slots for 
the goal of the plan, the code generated by the plan, etc. Plans for counting, 
summing, and searching are of this type. 

Complex program plans-CPPlans-are constructed from a number of 
PPlans, in order to achieve goals at a higher level. Other types of plans are 
abstract plans (APlans), which represent knowledge of different types of 
loop, different types of sort etc., specific plans (SPlans), which represent 
specific routines, such as bubble sort, and global plans (GPlans), such as 
“initialize”, “validate” or “update”. Although such knowledge undeniably 
exists and is understood by experts, the distinctions between these different 
types of plans are not very clear. For the purposes of this paper, therefore, 
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find an occurrence of ?x 

CODE PLAN TERMS 

?found := false initialise to not found 
loop through category of ?x 

if ?x then 
?found := true set it to true 

... := ?x use it 

i) loop using ?found as end test 
ii) loop using ?found within the loop 
iii) a marker to be used outside the loop 

Jncluded Dla ns; None 

DlanS; Store ?x when found 

PPlan - ‘found ’ olan. 

FIG. 1 Plan descriptions (from Rist, 1985). 

PPlans will be assumed to be the typical plans, as they represent the point of 
agreement across all the writing on programming plans. In particular, the 
plans used in the experiment reported below are the “average”, “filter”, 
“input” and “maximum” plans. 

Empirical Studies 

The majority of studies addressing the content and structure of expertise in 
programming have been conducted by the Cognition and Programming 
Project at Yale. A number of experiments has been conducted to demon- 
strate the possession of such plan knowledge by expert programmers. 

Soloway, Ehrlich, Bonar, and Greenspan (1982) and Soloway and Ehrlich 
(1983) have presented experimental evidence for the ability of expert pro- 
grammers to use plans. For example, in one study novices and experts were 
required to complete the initialization statements at the beginning of a 
program. Experts were significantly more likely to fill the gap with appro- 
priate constructs than were novices, suggesting that they have acquired plan 
knowledge about the roles of variables and forms of initialisation and 
update. Other studies have shown that novices frequently make errors as a 
result of attempts to achieve two goals with a single plan (referred to as 
“merged goals”). 
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Rist (1985) collected both experimental and protocol data to investigate 
the development of plans and expertise. In his experiment (with 11 novices 
and 15 experts) the programs were analysed into goal and plan structures, the 
former being at a higher level than the latter. Hypothesizing that the higher- 
level structure would be more beneficial to the experts, Rist gave both types 
of information to groups of novices and experts, expecting an interaction. 
Instead, the plan structure proved most useful to both groups in a debugging 
task. Rist argues that this is not evidence against the theory, but that it is due 
to his failure to analyse the plan and goal structure of the program correctly. 

The protocols, obtained from novices and experts, provide a clear 
demonstration of the use of plans by experts. For example, when comprehen- 
sion behaviour was classified as either deductive or inductive, Rist observed 
that experts generally deduced the presence of plans and matched the code 
against their deductions, whereas novices induced and constructed plans 
while reading the code. Unfortunately much of this analysis is subjective, 
with Rist consistently using examples from the performance of the “much 
less skilled” novice (there were only two novices). 

Problems with Programming Plans 

The above analysis of programming plans raises three important questions, 
some of which have already been mentioned: 

1. Are plans psychologically real? Their existence is mainly inferred from 
protocol and error analysis, rather than from direct experimental 
evidence. Such support can be obtained by showing that perceptual 
cues to the plan structure of a program improve the comprehensibility 
of the program. 

2.  Are plans the main psychological representation of programming know- 
ledge? The plan theory suggests that plans are the expert program- 
mer’s mental representation of a program, that they represent the deep 
structure of the problem. Thus, providing a situation in which the plans 
can be readily perceived should improve performance on all program- 
ming tasks. 

3 .  Are the observed plans related to the problem being solved, or the 
language being used? All the existing evidence comes from studies 
with Pascal programmes, with the assumption that the effects will 
generalize to other languages. But there have been no attempts to 
examine whether programmers in other languages use similar plans. 

The experiment to be described addresses these three questions by 
providing perceptual cues to different structures in a program and observing 
those tasks in which performance is improved. Thus, one can discover which 
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tasks require information from which structures and which structures are 
understood by the programmer (cf. Gilmore & Green, 1984; Gilmore, 
1986a). In the experiment the tasks compared are the detection of a variety of 
bug-types, with perceptual cues provided to both plan and control structures. 

Classifying Errors Through Plan Analysis 

Spohrer et al. (1985) analysed a large collection of novice Pascal errors 
(Johnson, Soloway, Cutler & Draper, 1983) according to the plan theory. 
Their classification scheme describes bugs as differences between a novice’s 
implementation of a plan and a correct implementation of that plan. The 
difference is described in terms of the component of the plan in which is 
occurs (for example, input, initializations), and within these components the 
difference can be described as either missing, malformed, spurious, or 
misplaced. 

However, there are problems with this scheme because it is what Reason 
(1984) describes as a behavioural scheme, relying upon simple, observable 
categories such as omission, substitution etc. In the experiment described 
below, a different classification scheme is used, which does not examine 
discrepancies in the behaviour of the correct and the buggy program, but in 
their structure. The following categories of bugs are distinguished: 

1. Surface level bugs. These bugs are independent of any particular 
structure in the program and may be caused by typing errors and 
syntactic slips (for example, missing or misplaced quotes or undeclared 
variables). 

2. Control-fiow bugs. These occur within the control-flow structure of 
the program, without affecting other structures. They may occur in one 
piece of control-flow, or at the interaction of two bits of control-flow 
(for example, a missing “begin” statement). 

Even when the control-flow structure is correct, 
the plan structure may contain errors (for example, updating the wrong 
variable). 

Both the control-flow structure and the 
plan structure may be correct, but the interaction of the two may 
contain errors (for example, initializations within the main loop). 

3 .  Plan strucfure bugs. 

4. Structure interacrion bugs. 

Making Structure Apparent 
Gilmore and Green (1 984) and Gilmore (1 986a) have shown how providing 
perceptual cues to aspects of program structure can lead to large improve- 
ments in the performance of relevant programming tasks. The issue of 
whether programming problems possess an underlying deep structure gives 
rise to the specific question of whether providing perceptual cues to the plan 
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structure of a program improves specific task performance or general 
comprehensibility. Given the above bug classification scheme, it is appropn- 
ate to compare the highlighting of plan structures with the highlighting of 
control-flow structures. 

Highlighting Control- flo w Structure- Indentation 

Many experiments have been performed on the value of indentation in 
programs (e.g. Miara, Musselman, Navarro, & Shneiderman, 1983; Kesler et 
al., 1984) with apparently conflicting results. But a closer inspection reveals 
that they are in agreement: indentation is useful for tasks that require an 
understanding of the control-flow structure of the program, but it is not 
useful for other programming tasks. Thus, indentation seems like the ideal 
perceptual cue to use to highlight the control-flow structure of the program 
without affecting the perception of other structures. 

Highlighting Plan Structure- Colour 

If indentation were used to highlight plan structures as well, then it would 
be impossible to construct an experimental condition in which both types of 
structure were cued. Thus, the perceptual cues to plan structure must not 
conflict with indentation. This can be achieved by the use of colour cues, in 
which fluorescent highlighting pens are used to group the lines of code which 
belong to the same plan. 

Hypotheses 

The results of Gilmore and Green (1984) suggest that it is reasonable to 
expect that plans are just another view of the program code, rather than a 
mental language of programming, and claims by Anderson (1985) suggest 
that plans will be equally useful to expert BASIC programmers as to expert 
Pascal programmers. Thus, the following predictions can be made: 

1. For surface errors: 

2 .  For control-JZow errors: 

The presence of cues will make no difference to the 
detection of surface errors. 

Indentation cues to control-flow will improve 
the detection of control-flow errors (i.e. no cues and plan structure cues 
will produce a lower detection rate than control structure cues or both 
cues). 

The use of colour cues to plan structures will improve 
the detection of plan errors (i.e. no cues and control structure cues will 
produce a lower detection rate than plan structure cues or both cues). 

The presence of both types of cues will 

3 .  Forplun errors: 

4. For interuction errors: 
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improve the detection of these errors (i-e. both cues will produce a 
higher detection rate than the other three conditions). 

This last prediction is less certain than the others, and it is included more 
for the sake of completeness, as there is no evidence to suggest how 
programmers will react to the presence of two types of perceptual cue in the 
same program. 

Method 
Subjects were recruited from final-year Computer Science 

undergraduates at the Universities of Cambridge, Sheffield, and Lancaster, 
from final-year Applied Maths students at Cambridge, and final-year 
Engineering students at Lancaster. There were 32 experienced Pascal pro- 
grammers and 32 experienced BASIC programmers. The subjects were 
predominantly male, with an average age of approximately 22. For most 
students (44) the experiment occurred after their final examinations, whereas 
for a few (20) it occurred near the beginning of their final year. The 
experiment had no bearing on their course marks and subjects were paid for 
their participation. 

Subjects. 

Experimental Programs. Three problems were used, similar to those 
studied by the Yale project. One calculated an average over 10 inputs and 
was used as a practice problem (Problem 1). The other problems were more 
complex, one calculating an average over a certain number of filtered inputs 
(Program 2), and the other calculating the maximum as well (Problem 3). 
Buggy programs for each problem were created (four for the practice 
problem, ten each for the other two), and each buggy program contained two 
bugs, giving a total of 40 bugs in the experimental programs (ten of each of 
the four types). 

Indentation was added to the Pascal programs by including 4 extra spaces 
following each begin, and removing these spaces before each end. In the 
BASIC programs, indentation was added in a manner that reflected the 
underlying control structure. The cues to the plan structures were introduced 
to both languages using fluorescent marking pens in three distinctive colours. 
In all programs the same colour was always used for the same plan. The 
plans involved were input, average, jilter and maximum, but only three 
occurred in any one program. 

Design. The experiment used a bug-detection task with four different 
program formats within each language: 

1 .  no perceptual cues (no-cues); 
2. perceptual cues to control-flow structure (control-cues); 
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3. perceptual cues to plan structure (plan-cues); 
4. perceptual cues to both control-flow and plan structure (both-cues). 

An example of the both-cues condition is given in Figure 2, in both Pascal 
and BASIC, although different fonts are used instead of different colours. 
Likewise, there were four bug types: 

I .  Surface errors; 
2. Control-flow errors; 
3. Plan structure errors; 
4. Plan structure x Control-flow interaction errors. 

The same bugs were used in all the format conditions, and as far as 
possible in both languages. Thus, the experiment used a mixed design, with 
two between-subjects factors (language and program format) and one 
within-subjects factor (bug type), with 8 subjects in each group. 

Performance was measured by the number of each type of bug detected in 
each of the four program conditions. Figure 2a contains a Plan Error and an 
Interaction Error, and Figure 2b contains a Surface Error and a Control 
Error. 

Procedure. The experimental programs were presented to subjects in a 
booklet, with one program per page. The practice problems occurred in a 
fixed order, but the order of the remaining programs was randomized, except 
that the filtering programs were presented before the maximum programs. 

The initial instructions to the subjects described their task as one of 
marking novice programs that had been produced under examination 
conditions. This provided a justification for the task as a whole and for the 
repetition of a single program ten times. This description of the task also 
emphasized to subjects that their task was to murk the errors and not to 
correct them. Subjects were given a limited amount of time to mark each 
program (60, 80, and 100 sec on problems 1, 2, and 3, respectively). 

Following these general instructions, subjects were given a specification of 
Problem 1 -the practice problem-and an example correct program. They 
had 2min to study this. The experimenter was available to answer any 
questions throughout this period. Next the subjects marked the four buggy 
practice programs. They were informed of the “expected” bugs after each 
program. Any alternative bugs suggested by the subjects were marked as 
well. The same routine was then followed for Problems 2 and 3, except that 
3min was allowed for the initial study of the problem specification and 
sample program, and the randomized order of the programs precluded the 
provision of feedback. 

For each program subjects were told to look for errors, but not how many 



PLANS AND PROGRAMMING EXPERTISE 431 

10 program pfobl2; 
20 vars depth, days, rainfal1:integer; 
30 average:real; 

40 begin 
50 
60 begin 
I 0  depth := 0; 

80 w r i t e l n  ("Noah, p l e a s e  e n t e r  t o d a y s  r a i n f a l l  
90 r e a d l n  ( r a i n f a l l )  ; 

100 rainfall:= rainfall + depth; 
110 end; 
120 average := deptW4Q 
130 writeln("Average is ", average); 

140 end. 

for days := 1 to 40 do 

(a) Pascal program (with plan error 
line 100 and interaction error line 70). 

10 REM probl4 
20 for n= 1 to 40 
30 p r i n t  "Noah, p l e a s e  e n t e r  todays  r a i n f a l l "  
40 read  r a i n  
50 total = total + rain 
60 average = total /40 
70 print "Average is avera" 

80 next 

line 70 and control-flow error lines 55/80). 
(b) Basic program (with surface error 

FIG. 2 Example programs used in the experiment. Different fonts are used to represent the 
colour highlighting of different plans. 

to look for. For each one they found they were asked to note the line number 
of the error and a short description of the error. 

Results 

The mean error detection rates are shown in Table 1.  A three-factor ANOVA 
was performed on this data, revealing main effects of language, F( 1,56) = 7.3, 
p<O.OI ,  and bug type, F(3, 168)=26.6,p<0.01. The Language x Bug type 
interaction was significant, F(3, 168) = 7.7, p < 0.01, as was the three-way 
interaction between language, bug type, and cue type, F(9, 168) = 2.2, 
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p < 0.05. The emphasis of the ensuing analysis was to tease apart this three- 
way interaction, as simple interpretations of the other effects are not possible. 

Separate ANOVAs for the results from each language revealed that the 
cue type and bug type interaction was significant for the Pascal program- 
mers, F(9,84) = 2.7, p ~ 0 . 0 5 ,  but not for the BASIC programmers, 
F(9,84) = 0.05. This interaction for the Pascal programs is illustrated in 
Figure 3, by showing performance in the three-cued conditions relative to the 
no-cues baseline. Planned comparisons were performed from the Pascal 
ANOVA to investigate whether performance was best when cue type and bug 
type were matched. These comparisons correspond to the four hypotheses 
presented earlier, except that they applied to both languages, rather than to 
Pascal alone. Thus, in relation to Hypothesis 1, for the surface errors an 
analysis of simple main effects revealed no effect of cues, F(3,84) = 0.02. 
Hypothesis 2 concerned the plan structure errors, for which the comparison 
between plan cue conditions and the other cue conditions was significant, 
Fcomp (1,84) = 9.8, p < 0.01. For control structure errors (Hypothesis 3) the 
comparison between control cue conditions and the others was significant, 
Fcomp ( I ,  84) = 8.6, p < 0.01. Likewise, the comparison for interaction errors 
(Hypothesis 4) between the both-cues condition and the other three was 
significant (Fcomp (1,84) = 5.8, p < 0.05). Thus, for the Pascal programmers, 

TABLE 1 
Error detection rates (percent) by error type and programming language. 

Error Types 

Plan 
Sur-ace Structure 

PASCAL 

No Cues 
Indentation 
Colour 
Both 

Mean 

BASIC 

No Cues 
Indentation 
Colour 
Both 

Mean 

36 67 
41 64 
37 85 
41 81 

39 74 

62 71 
67 82 
59 61 
59 I1 

61 14 

Control 
Structure Inieraciion 

46 60 
67 56 
40 59 
51 74 

51 62 

61 65 
62 66 
64 60 
61 56 

62 62 
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Indentation Cues 

Colour Cues I . I I . I , I , . , I I , . , I , I , I , , ,  

Control Interaction 
Structure Structure 

El3xEms 

FIG. 3 Change in the error detection rates for the Pascal programs caused by the presence of 
cues. 

cues to particular structures only improve the detection of bugs within those 
structures. 

Figure 4 similarly shows the relative error detection rates for the BASIC 
programs, which are clearly different from those for the Pascal programs and 
from those predicted. The simple effects of cues were not significant for any 
of the four error types, F(3,84)= 1.5 for Plan Structure errors and 
F(3,84)< 1 for the other error types. Thus, the results for the BASIC 
programmers do not show any advantage for plan cues or for control cues. 

The other effects observed in the three-factor ANOVA are closely related 
to the above analysis of the three-way interaction. The main effect of 
Language and the Language x Bug interaction cannot be easily interpreted, 
because the effects are different for the different cues. Appendix 1 presents a 
table of the simple effects of language, which reveals that only for surface 
errors did the BASIC programmers consistently detect more errors than the 
Pascal programmers, F( 1, 168) > 5, p < 0.05), and Table 1 clearly shows the 
BASIC programmers were no better, on average, at detecting plan or 
interaction errors. 
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Chanae in detection - 
+20 

Indentation Cues 

Colour Cues ....................... r Both Cues 

FIG. 4 Change in the error detection rates for the Basic programs caused by the presence of 
cues. 

Because of the lack of any effects for the BASIC programmers and 
because many of the BASIC programmers commented that there was a large 
proportion of control-flow bugs, it was felt necessary to examine the error 
descriptions made by the two groups of programmers. Figure 5 shows for 
each bug type the percentage of those detected that were described in terms 
of control flow. It is clear that this proportion is considerably higher for the 
BASIC programs than for the Pascal programs, suggesting that the BASIC 
programmers may use control structure as their predominant view of the 
program. 

This tendency suggests that indentation should be the most useful cue to 
the BASIC programmers, as it provides cues to the information structure, 
which they find most useful. Re-examination of Figure 4 reveals that in three 
of the four error types the best bug detection rate occurred with the indented 
programs, though this difference did not approach significance. 

Thus, in summary, all of the hypotheses made in the introduction have 
been supported by the data from the Pascal programmers, whilst none of 
them has been supported by the data from the BASIC programmers. 
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% errors I 
described 
as control 

80 I I  

6o i 
Pascal BASIC 

20 401 I I 

435 

- 
Plan PI x con Plan PI x Con 

Surface Control Surface Control 

J=RRoR TYPF 

FIG. 5 Percentage of errors detected that are described in terms of control-flow. 

Discussion 

In relation to the three questions posed in the Introduction, the results clearly 
show that 

1. plan structures are psychologically meaningful to Pascal programmers, 
because perceptual cues to them bring about a significant improvement in 
performance; 

2. as plan structure cues do not improve performance on non-plan-related 
tasks, plans do not represent the deep structure of the problem but are a 
non-syntactic view of the code, with which experts are proficient; 

3. these Pascal plans do not generalise to BASIC, suggesting that expert 
BASIC programmers do not use the same view of the program as Pascal 
experts, possibly being more influenced by control-flow. 

Fortunately these answers are coherent, in that it would make sense for 
plans to be a mental language of programming and yet not to generalize to 
other languages. Likewise, if plans are only an alternative information 
structure within the program, then we should expect them to be partly 
determined by the language being used. 

The first two results do not lessen the importance of the plan concept, but 
they suggest that tools and languages should not be designed solely around 
plans. The emphasis needs to be on tools and languages that facilitate the 
interleaving of different plan components when writing, and the unravelling 
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of components when reading. Furthermore, the effectiveness of cues to plan 
structures reveals the importance of a clearer definition of plans, as from a 
formal definition it would be possible to provide such cues automatically. 

In furtherance of this end, we should turn our attention to the third 
result-the failure of the results to generalize across languages-because this 
means that formalizing the Pascal plans, rather than a more general concept, 
may be inadequate for the provision of tools for other languages. 

But before discussing these matters in too great a detail, it is essential to 
consider the possibility that these results arise simply because of uninterest- 
ing population differences, as there is clearly a confounding of subject and 
language effects. An obvious argument would be that the BASIC program- 
mers were not as experienced, but although we have no data on their amount 
of programming experience, they were pursuing a course in Computational 
Mathematics which required a considerable quantity of programming. It is 
unlikely, therefore, that there was any sizeable difference in the programming 
experience of the two groups. 

A second possibility, which is more plausible, is that there were major 
differences in teaching strategies between the two groups. However, the main 
question of this paper is whether expertise in programming necessarily 
involves the use of plan structures when writing and reading programs. If the 
acquisition of plan structures is the defining quality of expertise, then 
differences in teaching stategy etc. should not affect the nature of expertise. 
For example, it is reasonable to argue that the nature of expertise in chess 
does not depend on teaching strategies, because the nature of attack and 
defence and the configurations that represent them are inherent in the game. 
Similarly, programming plans are assumed to be inherent in the problem, not 
in the language or the teaching, and the development of such schemata/plans 
is dependent upon experience, not on teaching. Our data shows that this is an 
indefensible viewpoint for programming expertise and that different forms 
of expert knowledge arise as a result of either language or teaching 
differences. Given that we have little information about the teaching strate- 
gies, but we do know plenty about the language differences, the remainder of 
this discussion will consider what influence they may have. It is hoped that by 
so doing some of the important teaching factors might suggest themselves. 
This can be best achieved by considering more carefully what programming 
plans might be. 

A Clarification of Plans 

Could Plans have Generalised Across Languages? 

If we consider Rist’s (1985) description of plan structures, then it is 
apparent that the original question of whether plans would generalize to 
BASIC is meaningless. In Rist’s description a plan is a mapping between 
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some aspect of the problem to be solved and lines of program code. Clearly 
this mapping could not be exactly the same in different languages, because 
the code itself differs. Thus, there is a need to clarify exactly what was 
intended by the question, and the implications of this for the results. 

There are in fact three components to Rist’s plan structures: first there is 
the knowledge of the parts of the problem to be programmed, then there is 
the knowledge of the programming language, and finally there is the 
mapping. Rist’s view of the relationship between these components is that 
they together form a plan structure as acquired by an expert programmer in 
an all-or-none manner. 

An alternative, however, is to view the first two as knowledge to be 
acquired and the third component as an automated skill (in the sense of 
Underwood, 1982). In this way a programmer can possess either of the first 
two components independently, but the third depends upon the existence of 
the other two. In this view a programmer may fail to display knowledge of 
plans for a variety of reasons. 

I .  A programmer may lack the knowledge with which to analyse the 
problem into its parts; for example, a progammer may be unfamiliar 
with the task, or components of the task, being solved (e.g. calculating 
an ANOVA) and therefore be unable to take advantage of this. 

2. A programmer may lack the knowledge of how to code a particular 
part of the problem, even when the required algorithm is known. Such 
knowledge is likely to be related to experience. This possibility is 
supported by the fact that in Rist (1986) there was evidence that 
novices could appreciate the plans used in a program. 

3. Finally, a programmer may possess both these pieces of knowledge, 
but the process of mapping one onto the other may not be known, or 
automated. This automatization process will also be related to pro- 
gramming experience. 

Given this view of plan structures, the original question about the 
generalization of plans can be understood. The question addressed by these 
experiments was whether the mapping between equivalent pieces of code and 
their role in the problem was similarly automated in both groups of 
programmers. The results suggest not, and it is unlikely that this is due to 
differences in the knowledge aspect of plans, as there is no obvious reason for 
the two groups to differ in this-the language-independent knowledge can be 
assumed equal in programmers of such similar backgrounds, and the 
language-dependent knowledge is unlikely to differ, as both languages 
require similar algorithms to solve these problems. 

The question that remains, therefore, is why should the mapping become 
automated for Pascal programmers, but not (or less so) for BASIC program- 
mers? Two reasons suggest themselves: 
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1. BASIC does not contain stereotypic fragments; 
2. BASIC programmers fail to detect these fragments. 

In fact, both of these may be true. Firstly, the greater variety of syntactic 
constructs and the structure within Pascal (compared with the BASIC used in 
this experiment) provides the programmer with an easier task, as there is a 
greater chance that stereotypes will occur. Second, factors such as the 
declaration and initialization of variables in Pascal provides an extra 
reference point for each variable, suggesting its role before the main 
processing loop. Also, the fact that Pascal programmers have a compiler 
than can detect most surface errors leaves them with more time to study the 
higher-level structures of the program. This argument is supported by the 
fact that it was only in the surface errors that there was a consistent 
difference (across all cue conditions) in the error detection rate between the 
two languages (see Appendix 1 and Table 1). 

The general point underlying these explanations is that the Pascal 
programs are more discriminable from each other (cf. Fitter & Green, 1981), 
allowing the programmer to infer the role of a particular statement more 
easily. This is a property that we have termed role-expressiveness (Gilmore, 
1986b). The argument is that role-expressiveness is a property of the 
language that enables the automatization of the mapping between problem 
and programming knowledge. In general, languages that promote role- 
expressiveness will be easier to use. 

Role - Expressiveness 

There are three components to role-expressiveness: 

1. Discriminability: This is simply whether the notation provides easy 
access to chunks of code, where a chunk may be an individual statement, or a 
group of statements. The first step in perceiving the role of some statement is 
being able to discriminate that line from those that surround it. 

The structural role of a statement is 
its role within the program itself, independent of the problem being solved. 
Unstructured languages (such as some BASICS) may use the same piece of 
code for more than one purpose (e.g. as an initialization and as an update). 
Other languages make it harder to see what action is being performed by 
some statement. For example, Prolog does not distinguish between instan- 
tiated and uninstantiated variables-the Prolog command (SUM X Y Z) 
may be adding X to Y, subtracting either of them from Z, or validating that a 
sum is correct. 

Programmers need to understand not only 
the structural role of program statements, but also their task role. Difficulties 
arise here in languages that force the programmer to include statements with 

2. Statement-Structure Mapping: 

3. Statement- Task Mapping. 
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10 add-egg 
20 stir 
30 IF need-more-egg GOTO 10 
40 IF ready-to-eat GOTO 70 
50 add-oil 
60 GOTO20 
70 use-mayonnaise 

FIG. 6 An unstructured program for making mayonnaise. Line 10 has two roles-adding the 
initial egg and adding extra egg later (after Green, 1980). 

either many task roles or no task role. Figure 6 provides an example of 
multiple task roles, in which the opening statement of the program has two 
task roles. A different example of difficulty at this level can be seen in 
Soloway, Benar, and Ehrlich’s (1983) study of novices’ looping errors in 
Pascal, in which they observed that novices who tried to force the problem 
into a “read/process” loop made errors when they were required to test the 
terminating condition twice. The cause of this seems to be that the second test 
has no clear task role. Informally we have noted a similar effect with novice 
POP1 1 programmers learning tail-recursion. They struggle when the syntac- 
tic structure of their program requires that the recursive function be called 
twice. An example of such a program is given in Figure 7. 

This concept of role-expressiveness is very important in the automation of 
the mapping between program code and its function, but it is not the only 
determinant of programming success (see Gilmore, 1986b, and Green, 
Bellamy, & Gilmore, in preparation, for others). The difficulty that Lisp 
novices have understanding the CONS function (Anderson, Farrell, & 
Sauers, 1984) can be interpreted as a problem at the statement-structure 
mapping. The automation of this mapping may give rise to a different type of 
plan knowledge. Different teaching strategies may provide environments in 
which different emphases are placed on these different aspects of program- 

define countx(list, x); 
if list = [I then 

elseif hd(list) = x then 

else 

endif 
enddefine; 

0 

countx(tl(list),x) + 1 

count x (tl (list), x) 

FIG. 7 
recursion. The problem can be avoided by the use of a variable. 

A POP11 program whose syntactic structure requires the duplication of the tail- 

EP c\ 40/.3-8 
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ming knowledge, thus leading to differences in the nature of expertise. Much 
more research is needed on the importance of language and educational 
factors in determining the development of expertise. 

SUMMARY 

This paper has presented data that reveal a need to clarify the concept of 
programming plans and their role in expertise. We claim that plans do not 
represent the underlying deep structure of programming problems, and that 
the content of plans as observed in Pascal experts is not the only possible 
content in plan knowledge. Plans are described as having three components: 

1. “naive” knowledge of methods of solving the problem of interest; this 
may be affected by knowledge of the syntax of the programming 
language; 

2. knowledge of how to achieve particular effects within the programming 
language; 

3. an “automatic” process that maps (1) onto (2). 

This model suggests that plans may be of two types: Firstly, the mapping 
may be triggered by (l) ,  which includes most of the plans decribed by the 
Yale project; secondly, the mapping may be triggered by (2)-for example, a 
mapping may exist between the use of lists to solve some problem and the 
Pascal representation of list structures. The important factor is that expertise 
can develop at all three levels independently. This has implications for 
development of programming tools and teaching aids. 

Although our knowledge of the formation of automatic cognitive pro- 
cesses is not sufficient to allow us to help students to construct the mapping, 
it is reasonable to suppose that increasing a student’s awareness of the two 
types of knowledge and providing practice in mapping one onto the other 
should be of great benefit. This explains, in part, the success of the structured 
programming school, because their emphasis on problem decomposition 
should allow students to perceive the common methods of solution within 
problems. Likewise, tools such as Bridge (Bonar & Cunningham, in press) 
and Proust (Johnson, 1986) provide Pascal students with considerable 
exposure to knowledge of Type (2). However, whereas structured program- 
ming and knowledge of type (1) are language-independent, tools such as 
Bridge and Proust are not. Thus, the important next steps are to develop 
methods of predicting what knowledge of Type (2) would be for other 
languages and to test these predictions empirically. If the results support this 
model of expertise, then tools for languages other than Pascal may be 
possible. 

In conclusion, the concept of a programming plan is of central importance 
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to the development of powerful programming environments and usable 
programming languages, but determining their nature in language-indepen- 
dent terms is an essential priority, which could have a significant impact on 
general theories of the nature of expertise. 
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APPENDIX 1 

The Fvalues for the simple effects of language 

Error Types 

Plan Control 
Surface Structure Structure Interaction 

No cues 27.6 0.2 3.7 0.4 
Indentation 27.2 5.7 0.4 1.6 
Colour 7.2 5.0 8.9 0.16 
Both 5.0 0.32 1.6 4.9 

df= 1,168. Fc,,=3.92. 
Bold values indicate significant differences. 
Italic values indicate those where Pascal programmers detected more errors. 




